

Teaching a Computer to Integrate

Joshua Isaacson

In Collaboration with: C. Gao, S. Höche, C. Krause, H. Schulz

Fermilab Al Jamboree

13 February 2020

Motivation

- LHC requires large number of Monte Carlo events
- Due to CPU costs, MC statistics will become significant uncertainty

[ATLAS]

Motivation

J. Isaacson

- Time to generate an event dominated by hard process not shower
- Large computational cost for unweighting at high multiplicity

Importance Sampling

No Importance Sampling

$$\int_0^1 f(x)dx \xrightarrow{MC} \frac{1}{N} \sum_i f(x_i) \quad \text{iid } \mathcal{U}(0,1)$$

Importance Sampling

$$\int_0^1 \frac{f(x)}{q(x)} q(x) dx \xrightarrow{MC} \frac{1}{N} \sum_i \frac{f(x_i)}{q(x_i)} \quad \text{iid } q(x)$$

Importance Sampling

No Importance Sampling

$$\int_0^1 f(x)dx \xrightarrow{MC} \frac{1}{N} \sum_i f(x_i) \quad \text{iid } \mathcal{U}(0,1)$$

Importance Sampling

$$\int_0^1 \frac{f(x)}{q(x)} q(x) dx \xrightarrow{MC} \frac{1}{N} \sum_i \frac{f(x_i)}{q(x_i)} \quad \text{iid } q(x)$$

Goal: Choose a function q(x) such that $\frac{f(x)}{g(x)} \approx 1$.

- Best is q(x) = f(x), requires analytic inverse of CDF
- Acceptable to get close enough by fitting f(x) to some assumed form

Previous Approaches

Generate From Events:

- Pros:
 - Fast evaluation of events
 - Easy to train using existing frameworks
- Cons:
 - Requires large sample of events to train
 - Under-trained \rightarrow Wrong cross-sections

Generate Events:

- Pros:
 - No events required to train
 - Under-trained \rightarrow Still correct cross-section
- Cons:
 - Requires Jacobian of Neural Network in inference

Normalizing Flows

Problem: Numerical Jacobian of Network scales like $\mathcal{O}\left(n^3\right)$ **Goal:** Develop a network architecture with analytic Jacobian.

Normalizing Flows

Problem: Numerical Jacobian of Network scales like $\mathcal{O}\left(n^3\right)$ **Goal:** Develop a network architecture with analytic Jacobian. Requirements:

- Bijective
- Continuous
- Flexible

Normalizing Flows

Problem: Numerical Jacobian of Network scales like $\mathcal{O}\left(n^3\right)$

Goal: Develop a network architecture with analytic Jacobian.

Requirements:

- Bijective
- Continuous
- Flexible

Answer: Normalizing Flows!

- First introduced in "Nonlinear Independent Component Estimation" (NICE)
 [1410.8516]
- More complex transformations using splines in [1808.03856] and [1906.04032]
- Easy to implement using TensorFlow-Probability

Normalizing Flows: Basic Building Block

Forward Transform:

$$y_A = x_A$$
$$y_{B,i} = C(x_{B,i}; m(x_A))$$

Inverse Transform:

$$x_A = y_A$$

$$x_{B,i} = C^{-1}(y_{B,i}; m(y_A))$$

The ${\cal C}$ function: numerically cheap, easily invertible, and separable.

Jacobian:

$$\left| \frac{\partial y}{\partial x} \right| = \begin{vmatrix} 1 & \frac{\partial C}{\partial x_A} \\ 0 & \frac{\partial C}{\partial x_B} \end{vmatrix} = \frac{\partial C(x_B; m(x_A))}{\partial x_B}$$

4

Normalizing Flows: Basic Building Block

Jacobian is $\mathcal{O}\left(\mathbf{n}\right)$

4

Test Functions: 4-d Camel

Test Functions: 4-d Camel

Results

unweighting efficiency		LO QCD					NLO QCD (RS)	
$\langle w \rangle / w_{ m max}$		n = 0	n = 1	n = 2	n = 3	n = 4	n = 0	n = 1
$W^+ + n \text{ jets}$	Sherpa	$2.8 \cdot 10^{-1}$	$3.8 \cdot 10^{-2}$	$7.5 \cdot 10^{-3}$	$1.5 \cdot 10^{-3}$	$8.3 \cdot 10^{-4}$	$9.5 \cdot 10^{-2}$	$4.5 \cdot 10^{-3}$
	NN + NF	$6.1 \cdot 10^{-1}$	$1.2 \cdot 10^{-1}$	$1.0 \cdot 10^{-3}$	$1.8 \cdot 10^{-3}$	$8.9 \cdot 10^{-4}$	$1.6 \cdot 10^{-1}$	$4.1 \cdot 10^{-3}$
	Gain	2.2	3.3	1.4	1.2	1.1	1.6	0.91
$W^- + n$ jets	Sherpa	$2.9 \cdot 10^{-1}$	$4.0 \cdot 10^{-2}$	$7.7 \cdot 10^{-3}$	$2.0 \cdot 10^{-3}$	$9.7 \cdot 10^{-4}$	$1.0 \cdot 10^{-1}$	$4.5 \cdot 10^{-3}$
	NN + NF	$7.0 \cdot 10^{-1}$	$1.5 \cdot 10^{-1}$	$1.1 \cdot 10^{-2}$	$2.2 \cdot 10^{-3}$	$7.9 \cdot 10^{-4}$	$1.5 \cdot 10^{-1}$	$4.2 \cdot 10^{-3}$
	Gain	2.4	3.3	1.4	1.1	0.82	1.5	0.91
Z + n jets	Sherpa	$3.1 \cdot 10^{-1}$	$3.6 \cdot 10^{-2}$	$1.5 \cdot 10^{-2}$	$4.7 \cdot 10^{-3}$		$1.2 \cdot 10^{-1}$	$5.3 \cdot 10^{-3}$
	NN + NF	$3.8 \cdot 10^{-1}$	$1.0 \cdot 10^{-1}$	$1.4 \cdot 10^{-2}$	$2.4 \cdot 10^{-3}$		$1.8 \cdot 10^{-3}$	$5.7 \cdot 10^{-3}$
	Gain	1.2	2.9	0.91	0.51		1.5	1.1

Conclusions

Traditional Integration

- Numerical integration and the need for Monte Carlo
- Current approaches not sufficient for LHC

Conclusions

Traditional Integration

- Numerical integration and the need for Monte Carlo
- Current approaches not sufficient for LHC

Normalizing Flows

- Avoid computational difficulty of Jacobian
- Using splines to approximate CDF

Reculto

Conclusions

Traditional Integration

- Numerical integration and the need for Monte Carlo
- Current approaches not sufficient for LHC

Normalizing Flows

- Avoid computational difficulty of Jacobian
- Using splines to approximate CDF

Results

- Better than Sherpa up to 3i in all but Z channel
- Room still for further optimization
- Limited by computational resources to train, and not by algorithm

Normalizing Flows: Piecewise CDF

The NN predicts the pdf bin heights Q_i .

Normalizing Flows: Piecewise CDF

Piecewise Linear CDF: [Müller et al. 1808.03856]

The NN predicts the pdf bin heights Q_i .

$$C = \sum_{k=1}^{b-1} Q_k + \alpha Q_b$$

$$\alpha = \frac{x - (b-1)w}{w}$$

$$\frac{\partial C}{\partial x_B} \Big| = \prod_i \frac{Q_{b_i}}{w}$$

Normalizing Flows: Piecewise CDF

Piecewise Linear CDF: [Müller et al. 1808.03856]

$$C = \sum_{k=1}^{b-1} Q_k + \alpha Q_b$$

$$\alpha = \frac{x - (b-1)w}{w}$$

$$\left| \frac{\partial C}{\partial x_B} \right| = \prod_{k=1}^{b} \frac{Q_{b_k}}{w}$$

The NN predicts the pdf bin heights Q_i .

Rational Quadratic CDF: [Durkan et. al. 1906.04032]

$$C = y^{(k)} + \frac{(y^{(k+1)} - y^{(k)})[s^{(k)}\alpha^2 + d^{(k)}\alpha(1 - \alpha)]}{s^{(k)} + [d^{(k+1)} + d^{(k)} - 2s^{(k)}]\alpha(1 - \alpha)}$$

$$\alpha = \frac{x - x^{(k)}}{w^{(k)}} \qquad s^{(k)} = \frac{y^{(k+1)} - y^{(k)}}{w^{(k)}}$$

Predict widths $(w^{(k)})$, heights $(y^{(k)})$, and derivatives $(d^{(k)})$ of the knots of spline.